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Best arm selection problem  
Given K unknown probability distributions that can be sampled from, 
find the distribution with the largest mean, using fewest samples 
while keeping the probability of false selection to  ≤ δ
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•An intuitive overview 

• Optimal top 2 algorithm - chasing the fluid limit



Which coin has the highest probability of heads?
Stop sampling when you are 95% sure



Applications: Clinical trials

• Four vaccines (or experimental drugs). Which ones to give to patients 
•



Applications

• Placing advertisements on a Google search 

• Web construction amongst many options 

• Recommendation systems 
  

• Movies to recommend 
• Facebook posts to show  
• News paper articles to bring to your attention 
• Price to offer for a digital good 

• Travel route to recommend amongst many



Selecting the best player

•
To separate prob. 0.6 from 0.4 with 95% certainty 


need around 150 samples



      Estimating mean to  accuracy with 
error probability  

ATE estimation is similar 

ϵ
≤ δ



Best arm selection problem  
Given K unknown probability distributions that can be sampled from, 
find the distribution with the largest mean, using fewest samples 
while keeping the probability of false selection to  ≤ δ



Popular algorithm  



Our friend: Hoeffding

Each   are independent, identically distributed with zero mean  

Law of large numbers, Central limit theorem  


                                     


Hoeffding’s  Inequality captures large deviations -    
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Xi ≥ ϵ) ≤ exp(−nϵ2/2) .



    for all t with probability 1-  X̄t ∈ μ ± αt δ



1. Sample each arm once  

2. If at sample t, 
  

  

then remove arm j from consideration.   

Repeat till one arm left 

X̄max(t) − X̄j(t) ≥ 2αt

αt =
4 log(Kt/δ)

t

The successive rejection algorithm for arm rewards in [0,1]      
Dar, Mannor, Mansour 2006 



 

Best arm never rejected 

    

 

So  

 

αt = log(Kt2/δ)/t

X̄1(t) ≥ μ1 − αt

X̄a(t) ≤ μa + αt

X̄a(t) − X̄1(t) ≤ 2αt − (μ1 − μa)

Isolating the high probability tubes that contain sample 
averages 



Consider  tubes  

    X̄t ∈ μ ± 2αt

Samples needed      K O (log(1/δ)∑
a

1
(μmax − μa)2 )



Lower bounds and algorithms 
that match even the constant in 
the lower bounds  



A trivial lower bound

• Suppose each arm receives  samples for . 

• Consider large deviations approximation for sample average                                    

  where   for    

• If ,  then    for small  

• Thus  order  samples necessary

log(1/δ)α α ∈ (0,1)

P(X̄n ≈ a) ≈ exp(−nI(a)) I(a) > 0 a ≠ EX

n = log(1/δ)α P(X̄n ≈ a) ≈ δ
I(a)

log(1/δ)1−α > δ δ

log(1/δ)



Large deviations result (Sanov’s Thm.)
Green is the true distribution . Red is the empirical 
distribution  (based on generated samples 

    )


Probability of seeing empirical distribution  when the true 
distribution is  is 

  

 

       where   

μ
ν

(X1, X2, …, Xn)

ν
μ

≈ exp(−nKL(ν |μ))
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Lower bound: A heuristic argument

Two arms: Observed distributions from  and  samples  are  
 

With high probability, each   , so that if


 

As a skeptical scientist, you wonder its likelihood if true distributions are   

                                   

N1 N2
̂μ1(N1) and  ̂μ2(N2)

̂μi(Ni) ≈ μi

m( ̂μ1) > m( ̂μ2)  suggests that m(μ1) > m(μ2)

(ν1, ν2) : m(ν1) < m(ν2)



Likelihood under alternate hypothesis

 Let   

  Worst-case likelihood of incorrect assessment 

           

    

    This needs to be kept less than                         

Ac = {ν1, ν2 : m(ν1) < m(ν2)}

max
(ν1,ν2)∈Ac

e−N1KL( ̂μ1|ν1) e−N2KL( ̂μ2|ν2)

≈ max
(ν1,ν2)∈Ac

e−N1KL(μ1|ν1)+N2KL(μ2|ν2)

δ



In many arms setting

   Let  

Worst-case likelihood of incorrect assessment.             

   

  This needs to be less than .

Ac = {ν = (ν1, …, νK) : m(ν1) < max
i≥2

m(νi)}

max
ν∈Ac

e−∑i≤K NiKL(μi|νi))

δ



The lower bound optimisation problem

                             Minimize  

s.t. 

                


∑
a

Na

inf
{ν:m(ν1)<maxi≥2 m(νi)} ∑

a≤K

Na KL(μa |νa) ≥ log(1/δ)



          The Data Processing Inequality                                                   

                                     

 

 

             

                                       

KL(PX |QX) ≥ KL(Pg(X) |Qg(X)) .

KL(Pμ(X) |Pν(X)) ≥ KL(Pμ(IE) |Pν(IE))

KL(Pμ(X) |Pν(X)) =
K

∑
a=1

EPμ
Na(T)KL(μa |νa) .



The lower bound optimisation problem

                             Minimize  

s.t. 

                


∑
a

Na

inf
{ν:m(ν1)<maxi≥2 m(νi)} ∑

a≤K

Na KL(μa |νa) ≥ log(1/δ)

   Good time to Summarise! 



Simplifying the lower bound optimisation problem

                     Minimize  

,   for                          

                     ,   for     

        Since   

       And distributions restricted to single parameter exponential family

∑
a

Na

inf
ν:m(ν1)<m(νa)

N1KL(μ1 |ν1) + NaKL(μa |νa) ≥ log(1/δ) a ≥ 2

N1KL(μ1 |x1,a) + NaKL(μa |x1,a) ≥ log(1/δ) a ≥ 2 x1,a =
N1μ1 + Naμa

N1 + Na

{ν : m(ν1) < max
a≥2

m(νa)} = ∪a≥2 {ν : m(ν1) < m(νa)}



When to stop: Generalized likelihood ratio based

Compute logarithm of  

 

This equals        

Stop when the statistic exceeds  

 Maximum likelihood of data

 Maximum likelihood of data under alternate hypthesis

min
ν∈ ̂Ac ∑

a≤K

NaKL( ̂μa |νa)

log(1/δ) + smaller order terms



           Top-2 algorithms 



Top two  optimal algorithms are gaining interest  (DR 16, JDBHK 22)   β

  Index   empirical version of    

  1. Please don’t starve any arm 

  2. Select arm with largest sample mean with prob . 

3. Select challenger arm with smallest index  with prob   

4. Stop (generalised likelihood ratio test) when   

                    

ℐa N1KL(μ1 |x1,a) + NaKL(μ1 |x1,a)

β

1 − β

min
a

ℐa ≥ log(1/δ)+smaller order terms 



Recall the lower bound problem    minimise   

                 S. t.     

Has a unique strictly positive OPTIMAL solution that satisfies 

                                  

                            

                                           

∑
a≤K

Na

N1KL(μ1 |x1,a) + NaKL(μa |x1,a) ≥ log(1/δ) ∀a

N*1 KL(μ1 |x1,a) + N*a KL(μa |x*1,a) = log(1/δ) ∀a

∑
a

KL(μ1, x*1,a)
KL(μa, x*1,a)

= 1.



Optimal top 2 algorithm

g denotes empirical .   empirical   

1. Please don’t starve any arm  

2. If g >1,  sample arm 1 

3. If g< 1 sample arm with the empirical smallest index  

4. Stop when    

∑
a

KL(μ1, x1,a)
KL(μa, x1,a)

ℐa N1KL(μ1 |x1,a) + NaKL(μ1 |x1,a)

ℐa

min
a

ℐa ≥ log(1/δ)+smaller order terms 



After enough samples, the algorithm closely 
tracks a fluid path 

Under fluid path 

1) Empirical dist.  is equal to  

2) Once g=1 it stays one 

3) Once two indexes become equal they stay equal 

̂μ μ



Fluid view 
Suppose after initial exploration,   

Then samples given to arm 1 till  

 Indexes have order  

       

g = ∑
a

KL(μ1, x1,a)
KL(μa, x1,a)

> 1

∑
a

KL(μ1, x1,a)
KL(μa, x1,a)

= 1
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Feed arm 1 and minimum index(s) while maintaining   

 (Recall index   for total samples n) 

       

∑
a

KL(μ1, x1,a)
KL(μa, x1,a)

= 1

ℐa = N1(n)KL(μ1 |x1,a) + Na(n)KL(μa |x1,a)
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• Smallest indexes increase at least linearly 

• Larger ones increase sub linearly 

• Once they meet they move together 

• System becomes stationary once all  
    indexes are equal 



Key analysis step: Implicit function theorem  

It shows that the fluid solution satisfies ODEs concatenated 
together 

The algorithm after sufficiently large samples closely tracks the 
fluid path 



Implicit function thm works because Jacabian of constraints 
  

 And 

   for  

 

with respect to    after transformations is invertible.  

Thus  of perturbed system are close by.

∑
a

KL(μ1, x1,a)
KL(μa, x1,a)

= 1

N1KL(μ1 |x1,a) + NaKL(μa |x1,a) = I a ∈ B

N1 + ∑
a∈B

Na + ∑
a∈Bc

Na = N

(N1, Na, a ∈ B, I)

(N1, Na, a ∈ B)



Due Implicit Function Theorem, we have  

                                       

                                       for all  

Let ,       

( dNb

dN
= N′ b)

N′ 1 =
N1hB

(N1 + ∑a∈B Na)hB + d−1
B h(N)

N′ b =
NbhB + d−1

b,bh(N)
(N1 + ∑a∈B Na)hB + d−1

B h(N)
b ∈ B

ha =
∂g
∂Na

d1,a = d(μ1, x1,a) and da,a = d(μa, x1,a) hB = ∑
a∈B

had−1
a,a, h(N) = ∑

a∈Bc/1

haNa  and dB = (∑
a∈B

d−1
a,a)

−1

.



Simulation  



      Estimating mean to  accuracy with 
error probability  

[BDJZ22] 

ϵ
≤ δ



Estimating mean to  accuracy with error probability     ϵ ≤ δ

•  Sequentially generate iid samples   

• Stop when confidence interval  with   

• Guaranteed to contains mean  with probability at least 
. 

• We consider stable policies where   and  converge to 
deterministic constants as 

(X1, X2, …, Xτ)

( ̂μL
τ , ̂μR

τ ) ̂μR
τ − ̂μL

τ ≤ ϵ

μ = EXi
1 − δ

̂μR
τ ̂μL

τ
δ → 0



   

≥
log(1/δ)
KL(μ, μL)

a a+ϵ

Eτδ ≥
log(1/δ)

min (KL(μ, a), KL(μ, a + ϵ))

• Data from dist. , and confidence interval  
  
• Need enough samples to rule out that true mean is outside 

this interval 

          

μ (a, a + ϵ)

max (exp(−nKL(μ, a)), exp(−nKL(μ, a + ϵ))) ≤ δ



Estimating mean to  accuracy with error probability     ϵ ≤ δ

• Stop an n when  

  

          

         

μL
n = min {q < ̂μn : nKL( ̂μn, q) = log*(1/δ)}

μR
n = max {q > ̂μn : nKL( ̂μn, q) = log*(1/δ)}

μR
n − μL

n ≤ ϵ



Best arm selection problem  
Given K unknown probability distributions that can be sampled from, 
find the distribution with the largest mean, using fewest samples 
while keeping the probability of false selection to  ≤ δ



Controlling the probability of error [AJG20, AJK21]

Recall we stop when    

If you stop wrong,  contains the true probability vector .  

Need to bound   by . 

Dual representations, exponential concave inequalities, mixture martingales, 
Ville’s inequality cleverly used for this.

min
ν∈ ̂Ac ∑

a≤K

NaKL( ̂μa |νa) ≥ log(1/δ)+ small

̂Ac μ

P( ∑
a≤K

NaKL( ̂μa |μa)) ≥ log(1/δ)+ small, for any n) δ



Extending to general distributions

• Consider  

    

• Define   

ℒ := {η ∈ 𝒫(ℜ) : 𝔼X∼η( |X |1+ϵ ≤ B}

KLinf(μa, x) = inf
ν∈ℒ:m(ν)>x

KL(μa, ν)



Some conditions on the underlying distributions are necessary

Easy to find two distributions whose 
KL distance is arbitrarily close, but 
means are arbitrarily far.  

These are difficult to separate 

Some restrictions on distributions 
necessary - bounded, have sub-
Gaussian tails, variance or other 
moments bounded 



It  equals      such that 

  
   

 

  
  
 This is a convex program and is solved through Lagrangian duality.  

inf
κ ∑

i

log ( ηi

κi ) ηi

∑
i

|yi |
1+ϵ κi ≤ B, ∑

i

yiκi ≥ x and ∑
i

κi = 1.

Understanding  KLinf(η, x)



  where 
  

For  empirical distribution  we have  equals  

 

In developing concentration inequality for this, the maximum function poses difficulties. 
We observe that inside the maximum we have a sum of exp-concave functions.

max
(λ1,λ2)∈ℛ2

Eη log(1 − (X − x)λ1 − (B − |X |1+ϵ λ2),

̂μa(n) KLinf( ̂μa(t), m(μa))

max
(λ1,λ2)∈ℛ2

1
Na(n)

Na(n)

∑
i=1

log(1 − (Xi − m(μa))λ1 − (B − |Xi |
1+ϵ )λ2)) .

Using duality,   can be seen to equal KLinf(η, x)



Let  be a compact and convex subset and q be the uniform distribution on 
. Let  be any series of exp-concave functions. Then 

                      

Thus    is close to the expectation .  

The latter is a mixture of super-martingales and hence is a super martingale. 

Λ ⊆ ℜd

Λ gt : Λ → ℜ

max
λ∈Λ

T

∑
t=1

gt(λ) ≤ log Eλ∼qe
∑T

t=1 gt(λ) + d log(T + 1) + 1.

max
λ∈Λ

exp (
T

∑
t=1

gt(λ)) Eλ∼qe
∑T

t=1 gt(λ)

Sum of exp concave functions: a useful inequality 



Ville's inequality: For a non-negative super martingale 
, 

                        

(Mn : n ≥ 0)

P(∃n : Mn ≥ x) ≤
EM0

x
.

Ville’s inequality 



Conclusion 

 
Discussed the best arm identification problem, 
applications and a popular algorithm 

Introduced the optimal top-2 approach and discussed 
its fluid behaviour 

Argued that our algorithm closely tracks the fluid 
behaviour when generated samples are large 

Discussed the mean estimation problem 

Outlined how  guarantees are shown δ


